数据湖(五):Hudi 与 Hive 集成
csdh11 2024-11-30 14:14 4 浏览
Hudi与Hive集成
一、配置HiveServer2
Hudi与Hive集成原理是通过代码方式将数据写入到HDFS目录中,那么同时映射Hive表,让Hive表映射的数据对应到此路径上,这时Hudi需要通过JDBC方式连接Hive进行元数据操作,这时需要配置HiveServer2。
1、在Hive服务端配置hive-site.xml
#在Hive 服务端 $HIVE_HOME/conf/hive-site.xml中配置: <!-- 配置hiveserver2 --> <property> <name>hive.server2.thrift.port</name> <value>10000</value> </property> <property> <name>hive.server2.thrift.bind.host</name> <value>192.168.179.4</value> </property> <!-- 配置hiveserver2使用的zookeeper --> <property> <name>hive.zookeeper.quorum</name> <value> node3:2181,node4:2181,node5:2181</value> </property>
注意:“hive.zookeeper.quorum”搭建hiveserver2HA使用配置项,可以不配置,如果不配置启动hiveServer2时一直连接本地zookeeper,导致大量错误日志(/tmp/root/hive.log),从而导致通过beeline连接当前node1节点的hiveserver2时不稳定,会有连接不上错误信息。
2、在每台Hadoop 节点配置core-site.xml,记得发送到所有节点
<!-- 配置代理访问用户,如果不配置下列信息 hive的jdbc连接会报错 --> <property> <name>hadoop.proxyuser.root.hosts</name> <value>*</value> </property> <property> <name>hadoop.proxyuser.root.groups</name> <value>*</value> </property>
3、重启HDFS ,Hive ,在Hive服务端启动Metastore 和 HiveServer2服务
[root@node1 conf]# hive --service metastore &
[root@node1 conf]# hive --service hiveserver2 &
4、在客户端通过beeline连接Hive
[root@node3 test]# beeline
beeline> !connect jdbc:hive2://node1:10000 root
Enter password for jdbc:hive2://node1:10000: **** #可以输入任意密码,没有验证
0: jdbc:hive2://node1:10000> show tables;
二、代码层面集成Hudi与Hive
我们可以通过SparkSQL将数据保存到Hudi中同时也映射到Hive表中。映射有两种模式,如果Hudi表是COPY_ON_WRITE类型,那么映射成的Hive表对应是指定的Hive表名,此表中存储着Hudi所有数据。
如果Hudi表类型是MERGE_ON_READ模式,那么映射的Hive表将会有2张,一张后缀为rt ,另一张表后缀为ro。后缀rt对应的Hive表中存储的是Base文件Parquet格式数据+log Avro格式数据,也就是全量数据。后缀为ro Hive表中存储的是存储的是Base文件对应的数据。
1)在pom.xml中加入一下依赖
<!-- 连接Hive 驱动包--> <dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-jdbc</artifactId> <version>1.2.1</version> </dependency>
2)将对应依赖包放入Hive节点对应的lib目录下
将hudi-hadoop-mr-bundle-0.8.0.jar、parquet-column-1.10.1.jar、parquet-common-1.10.1.jar、parquet-format-2.4.0.jar、parquet-hadoop-1.10.1.jar包存入Hive lib目录下。由于Hudi表数据映射到Hive表后,Hive表底层存储格式为“HoodieParquetInputFormat”或者“HoodieParquetRealtimeInputFormat”,解析Parquet数据格式时使用到以上各个包。可以从Maven中下载以上包后,将这些包上传到所有Hive节点的lib目录下,包括服务端和客户端。
3)启动Hive MetaStore与Hive Server2服务
[root@node1 conf]# hive --service metastore &
[root@node1 conf]# hive --service hiveserver2 &
4)将hive-site.xml放入项目resources目录中
后期Hudi映射Hive表后,会自动检查Hive元数据,这时需要找到配置文件连接Hive。
1、COW模式-SparkSQL代码写入Hudi同时映射Hive表
1)COW模式代码如下
//1.创建对象
val session: SparkSession = SparkSession.builder().master("local").appName("insertDataToHudi")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.getOrCreate()
//2.创建DataFrame
val insertDF: DataFrame = session.read.json("file:///D:\\2022IDEA_space\\SparkOperateHudi\\data\\jsondata.json")
import org.apache.spark.sql.functions._
//3.向Hudi中插入数据 - COW模式
insertDF
.write.format("hudi")
//设置写出模式,默认就是COW
.option(DataSourceWriteOptions.TABLE_TYPE_OPT_KEY,DataSourceWriteOptions.COW_TABLE_TYPE_OPT_VAL)
//设置主键列名称
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "id")
//当数据主键相同时,对比的字段,保存该字段大的数据
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "data_dt")
//指定分区列
.option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY, "loc")
//并行度设置
.option("hoodie.insert.shuffle.parallelism", "2")
.option("hoodie.upsert.shuffle.parallelism", "2")
//表名设置
.option(HoodieWriteConfig.TABLE_NAME, "person_infos")
//关于Hive设置
//指定HiveServer2 连接url
.option(DataSourceWriteOptions.HIVE_URL_OPT_KEY,"jdbc:hive2://node1:10000")
//指定Hive 对应的库名
.option(DataSourceWriteOptions.HIVE_DATABASE_OPT_KEY,"default")
//指定Hive映射的表名称
.option(DataSourceWriteOptions.HIVE_TABLE_OPT_KEY,"infos1")
//Hive表映射对的分区字段
.option(DataSourceWriteOptions.HIVE_PARTITION_FIELDS_OPT_KEY,"loc")
//当设置为true时,注册/同步表到Apache Hive metastore,默认是false,这里就是自动创建表
.option(DataSourceWriteOptions.HIVE_SYNC_ENABLED_OPT_KEY,"true")
//如果分区格式不是yyyy/mm/dd ,需要指定解析类将分区列解析到Hive中
.option(DataSourceWriteOptions.HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY,classOf[MultiPartKeysValueExtractor].getName)
.mode(SaveMode.Append)
.save("/hudi_data/person_infos")
2)查询Hive中数据
hive> show tables;
infos1
hive> set hive.cli.print.header=true;
hive> select * from infos1;
hive> select `_hoodie_commit_time`,id,name,age,loc,data_dt from infos1;
3)更新表中数据,再次查询Hive中的数据
//4.更新数据,查询Hive数据
//读取修改数据
val updateDataDF: DataFrame = session.read.json("file:///D:\\2022IDEA_space\\SparkOperateHudi\\data\\updatedata.json")
//向Hudi 更新数据
updateDataDF.write.format("org.apache.hudi")
//设置写出模式,默认就是COW
.option(DataSourceWriteOptions.TABLE_TYPE_OPT_KEY,DataSourceWriteOptions.COW_TABLE_TYPE_OPT_VAL)
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "id")
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "data_dt")
.option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY,"loc")
.option("hoodie.insert.shuffle.parallelism", "2")
.option("hoodie.upsert.shuffle.parallelism", "2")
.option(HoodieWriteConfig.TABLE_NAME, "person_infos")
//关于Hive设置
//指定HiveServer2 连接url
.option(DataSourceWriteOptions.HIVE_URL_OPT_KEY,"jdbc:hive2://node1:10000")
//指定Hive 对应的库名
.option(DataSourceWriteOptions.HIVE_DATABASE_OPT_KEY,"default")
//指定Hive映射的表名称
.option(DataSourceWriteOptions.HIVE_TABLE_OPT_KEY,"infos1")
//Hive表映射对的分区字段
.option(DataSourceWriteOptions.HIVE_PARTITION_FIELDS_OPT_KEY,"loc")
//当设置为true时,注册/同步表到Apache Hive metastore,默认是false,这里就是自动创建表
.option(DataSourceWriteOptions.HIVE_SYNC_ENABLED_OPT_KEY,"true")
//如果分区格式不是yyyy/mm/dd ,需要指定解析类将分区列解析到Hive中
.option(DataSourceWriteOptions.HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY,classOf[MultiPartKeysValueExtractor].getName)
.mode(SaveMode.Append)
.save("/hudi_data/person_infos")
每次查询都是查询最后一次数据结果
2、MOR模式-SparkSQL代码写入Hudi同时映射Hive表
1)MOR代码如下
//1.创建对象
val session: SparkSession = SparkSession.builder().master("local").appName("insertDataToHudi")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.getOrCreate()
//2.创建DataFrame
val insertDF: DataFrame = session.read.json("file:///D:\\2022IDEA_space\\SparkOperateHudi\\data\\jsondata.json")
import org.apache.spark.sql.functions._
//3.向Hudi中插入数据 - COW模式
insertDF
.write.format("hudi")
//设置写出模式,默认就是COW
.option(DataSourceWriteOptions.TABLE_TYPE_OPT_KEY,DataSourceWriteOptions.MOR_TABLE_TYPE_OPT_VAL)
//设置主键列名称
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "id")
//当数据主键相同时,对比的字段,保存该字段大的数据
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "data_dt")
//指定分区列
.option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY, "loc")
//并行度设置
.option("hoodie.insert.shuffle.parallelism", "2")
.option("hoodie.upsert.shuffle.parallelism", "2")
//表名设置,不能重复,重复会报错
.option(HoodieWriteConfig.TABLE_NAME, "person_infos2")
//关于Hive设置
//指定HiveServer2 连接url
.option(DataSourceWriteOptions.HIVE_URL_OPT_KEY,"jdbc:hive2://node1:10000")
//指定Hive 对应的库名
.option(DataSourceWriteOptions.HIVE_DATABASE_OPT_KEY,"default")
//指定Hive映射的表名称
.option(DataSourceWriteOptions.HIVE_TABLE_OPT_KEY,"infos2")
//Hive表映射对的分区字段
.option(DataSourceWriteOptions.HIVE_PARTITION_FIELDS_OPT_KEY,"loc")
//当设置为true时,注册/同步表到Apache Hive metastore,默认是false,这里就是自动创建表
.option(DataSourceWriteOptions.HIVE_SYNC_ENABLED_OPT_KEY,"true")
//如果分区格式不是yyyy/mm/dd ,需要指定解析类将分区列解析到Hive中
.option(DataSourceWriteOptions.HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY,classOf[MultiPartKeysValueExtractor].getName)
.mode(SaveMode.Append)
.save("/hudi_data/person_infos2")
2)查询Hive表中的数据
hive> show tables;
注意:infos2_ro 中存储的只是Base文件中数据(parquet列式存储结果)
infos2_rt 中存储的是Base文件(Parquet列式存储结果)+*log*(Avro行式存储结果)
hive> select * from infos2_ro;
目前只有Base文件数据,查询的就是全量数据
hive> select * from infos2_rt;
目前只有Base文件数据,查询的就是全量数据
hive> select `_hoodie_commit_time`,id,name,age,loc,data_dt from infos2_ro;
hive> select `_hoodie_commit_time`,id,name,age,loc,data_dt from infos2_rt;
3)更新表中数据,再次查询Hive中的数据
//4.更新数据,查询Hive数据
//读取修改数据
val updateDataDF: DataFrame = session.read.json("file:///D:\\2022IDEA_space\\SparkOperateHudi\\data\\updatedata.json")
//向Hudi 更新数据,注意,必须指定Hive对应配置
updateDataDF.write.format("org.apache.hudi")
//设置写出模式,默认就是COW
.option(DataSourceWriteOptions.TABLE_TYPE_OPT_KEY,DataSourceWriteOptions.MOR_TABLE_TYPE_OPT_VAL)
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "id")
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "data_dt")
.option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY,"loc")
.option("hoodie.insert.shuffle.parallelism", "2")
.option("hoodie.upsert.shuffle.parallelism", "2")
.option(HoodieWriteConfig.TABLE_NAME, "person_infos2")
//关于Hive设置
//指定HiveServer2 连接url
.option(DataSourceWriteOptions.HIVE_URL_OPT_KEY,"jdbc:hive2://node1:10000")
//指定Hive 对应的库名
.option(DataSourceWriteOptions.HIVE_DATABASE_OPT_KEY,"default")
//指定Hive映射的表名称
.option(DataSourceWriteOptions.HIVE_TABLE_OPT_KEY,"infos2")
//Hive表映射对的分区字段
.option(DataSourceWriteOptions.HIVE_PARTITION_FIELDS_OPT_KEY,"loc")
//当设置为true时,注册/同步表到Apache Hive metastore,默认是false,这里就是自动创建表
.option(DataSourceWriteOptions.HIVE_SYNC_ENABLED_OPT_KEY,"true")
//如果分区格式不是yyyy/mm/dd ,需要指定解析类将分区列解析到Hive中
.option(DataSourceWriteOptions.HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY,classOf[MultiPartKeysValueExtractor].getName)
.mode(SaveMode.Append)
.save("/hudi_data/person_infos2")
查询Hive中对应两张表的数据结果
查询Base文件中的数据
hive> select `_hoodie_commit_time`,id,name,age,loc,data_dt from infos2_ro;
查询Base文件+log文件中数据,可以看到查询到的是修改后的结果数据
hive> select `_hoodie_commit_time`,id,name,age,loc,data_dt from infos2_rt;
三、手动层面集成Hudi与Hive
如果已经存在Hudi数据,我们也可以手动创建对应的Hive表来映射对应的Hudi数据,使用Hive SQL来操作Hudi。例如使用如下代码在HDFS中存储Hudi数据,这里采用MOR模式写入数据,方便后期测试:
1)向Hudi表中写入数据
//1.创建对象
val session: SparkSession = SparkSession.builder().master("local").appName("insertDataToHudi")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.getOrCreate()
//2.创建DataFrame
val insertDF: DataFrame = session.read.json("file:///D:\\2022IDEA_space\\SparkOperateHudi\\data\\jsondata.json")
import org.apache.spark.sql.functions._
//3.向Hudi中插入数据 - COW模式
insertDF
.write.format("hudi")
//设置写出模式,默认就是COW
.option(DataSourceWriteOptions.TABLE_TYPE_OPT_KEY,DataSourceWriteOptions.MOR_TABLE_TYPE_OPT_VAL)
//设置主键列名称
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "id")
//当数据主键相同时,对比的字段,保存该字段大的数据
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "data_dt")
//指定分区列
.option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY, "loc")
//并行度设置
.option("hoodie.insert.shuffle.parallelism", "2")
.option("hoodie.upsert.shuffle.parallelism", "2")
//表名设置
.option(HoodieWriteConfig.TABLE_NAME, "person_infos3")
.mode(SaveMode.Append)
.save("/hudi_data/person_infos3")
2)在Hive中创建对应的表数据
在Hive中创建表person3_ro,映射Base数据,相当于前面的ro表:
// 创建外部表,这种方式只会查询出来parquet数据文件中的内容,但是刚刚更新或者删除的数据不能查出来
CREATE EXTERNAL TABLE `person3_ro`(
`_hoodie_commit_time` string,
`_hoodie_commit_seqno` string,
`_hoodie_record_key` string,
`_hoodie_partition_path` string,
`_hoodie_file_name` string,
`id` bigint,`name` string,
`age` bigint,`data_dt` string)
PARTITIONED BY (`loc` string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
'org.apache.hudi.hadoop.HoodieParquetInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION 'hdfs://mycluster/hudi_data/person_infos3';
建好以上对应的表之后,由于有分区,还看不到数据,所以这里需要我们手动映射分区数据:
alter table person3_ro add if not exists partition(loc="beijing") location 'hdfs://mycluster/hudi_data/person_infos3/beijing';
alter table person3_ro add if not exists partition(loc='chongqing') location 'hdfs://mycluster/hudi_data/person_infos3/chongqing';
alter table person3_ro add if not exists partition(loc='hainai') location 'hdfs://mycluster/hudi_data/person_infos3/hainai';
alter table person3_ro add if not exists partition(loc='hunan') location 'hdfs://mycluster/hudi_data/person_infos3/hunan';
alter table person3_ro add if not exists partition(loc='shandong') location 'hdfs://mycluster/hudi_data/person_infos3/shandong';
alter table person3_ro add if not exists partition(loc='shanghai') location 'hdfs://mycluster/hudi_data/person_infos3/shanghai';
alter table person3_ro add if not exists partition(loc='shenzhen') location 'hdfs://mycluster/hudi_data/person_infos3/shenzhen';
alter table person3_ro add if not exists partition(loc='tianjin') location 'hdfs://mycluster/hudi_data/person_infos3/tianjin';
查看表数据
在Hive中创建表person3_rt,映射Base+log数据,相当于rt表,并映射分区:
// 这种方式会将基于Parquet的基础列式文件、和基于行的Avro日志文件合并在一起呈现给用户。
CREATE EXTERNAL TABLE `person3_rt`(
`_hoodie_commit_time` string,
`_hoodie_commit_seqno` string,
`_hoodie_record_key` string,
`_hoodie_partition_path` string,
`_hoodie_file_name` string,
`id` bigint,`name` string,
`age` bigint,`data_dt` string)
PARTITIONED BY (`loc` string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
'org.apache.hudi.hadoop.realtime.HoodieParquetRealtimeInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION 'hdfs://mycluster/hudi_data/person_infos3';
加载对应分区数据数据
alter table person3_rt add if not exists partition(loc="beijing") location 'hdfs://mycluster/hudi_data/person_infos3/beijing';
alter table person3_rt add if not exists partition(loc='chongqing') location 'hdfs://mycluster/hudi_data/person_infos3/chongqing';
alter table person3_rt add if not exists partition(loc='hainai') location 'hdfs://mycluster/hudi_data/person_infos3/hainai';
alter table person3_rt add if not exists partition(loc='hunan') location 'hdfs://mycluster/hudi_data/person_infos3/hunan';
alter table person3_rt add if not exists partition(loc='shandong') location 'hdfs://mycluster/hudi_data/person_infos3/shandong';
alter table person3_rt add if not exists partition(loc='shanghai') location 'hdfs://mycluster/hudi_data/person_infos3/shanghai';
alter table person3_rt add if not exists partition(loc='shenzhen') location 'hdfs://mycluster/hudi_data/person_infos3/shenzhen';
alter table person3_rt add if not exists partition(loc='tianjin') location 'hdfs://mycluster/hudi_data/person_infos3/tianjin';
查看结果数据
3)使用代码修改Hudi表中的数据:
修改数据如下:
{"id":1,"name":"ls1","age":40,"loc":"beijing","data_dt":"20210709"}
{"id":2,"name":"ls2","age":50,"loc":"shanghai","data_dt":"20210710"}
{"id":3,"name":"ls3","age":60,"loc":"ttt","data_dt":"20210711"}
//4.更新数据,查询Hive数据
//读取修改数据
val updateDataDF: DataFrame = session.read.json("file:///D:\\2018IDEA_space\\SparkOperateHudi\\data\\updatedata.json")
//向Hudi 更新数据
updateDataDF.write.format("org.apache.hudi")
//设置写出模式,默认就是COW
.option(DataSourceWriteOptions.TABLE_TYPE_OPT_KEY,DataSourceWriteOptions.MOR_TABLE_TYPE_OPT_VAL)
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "id")
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "data_dt")
.option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY,"loc")
.option("hoodie.insert.shuffle.parallelism", "2")
.option("hoodie.upsert.shuffle.parallelism", "2")
.option(HoodieWriteConfig.TABLE_NAME, "person_infos3")
.mode(SaveMode.Append)
.save("/hudi_data/person_infos3")
4)继续查询对应的两张Hive表数据
由于分区 “ttt”是新加入的分区,需要手动添加下分区才能在对应的Hive表中正常查询
alter table person3_ro add if not exists partition(loc="ttt") location 'hdfs://mycluster/hudi_data/person_infos3/ttt';
alter table person3_rt add if not exists partition(loc="ttt") location 'hdfs://mycluster/hudi_data/person_infos3/ttt';
查询表person3_ro
hive> select * from person3_ro;
查询表person3_rt
hive> select * from person3_rt;
此外,我们也可以不需要每次都自己手动添加分区,而是创建好对应的Hive表后,在代码中向Hudi中写数据时,指定对应的Hive参数即可,这样写入的数据自动会映射到Hive中。
我们可以删除Hive对应的表数据重新创建以及第一次加载分区,再后续写入Hudi表数据时,代码如下,就不需要每次都手动加载Hive分区数据。
//5.更新数据,指定Hive配置项
//读取修改数据
val updateDataDF: DataFrame = session.read.json("file:///D:\\2022IDEA_space\\SparkOperateHudi\\data\\updatedata.json")
//向Hudi 更新数据
updateDataDF.write.format("org.apache.hudi")
//设置写出模式,默认就是COW
.option(DataSourceWriteOptions.TABLE_TYPE_OPT_KEY,DataSourceWriteOptions.MOR_TABLE_TYPE_OPT_VAL)
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "id")
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "data_dt")
.option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY,"loc")
.option("hoodie.insert.shuffle.parallelism", "2")
.option("hoodie.upsert.shuffle.parallelism", "2")
.option(HoodieWriteConfig.TABLE_NAME, "person_infos3")
//关于Hive设置
//指定HiveServer2 连接url
.option(DataSourceWriteOptions.HIVE_URL_OPT_KEY,"jdbc:hive2://node1:10000")
//指定Hive 对应的库名
.option(DataSourceWriteOptions.HIVE_DATABASE_OPT_KEY,"default")
//指定Hive映射的表名称
.option(DataSourceWriteOptions.HIVE_TABLE_OPT_KEY,"person3")
//Hive表映射对的分区字段
.option(DataSourceWriteOptions.HIVE_PARTITION_FIELDS_OPT_KEY,"loc")
//当设置为true时,注册/同步表到Apache Hive metastore,默认是false,这里就是自动创建表
.option(DataSourceWriteOptions.HIVE_SYNC_ENABLED_OPT_KEY,"true")
//如果分区格式不是yyyy/mm/dd ,需要指定解析类将分区列解析到Hive中
.option(DataSourceWriteOptions.HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY,classOf[MultiPartKeysValueExtractor].getName)
.mode(SaveMode.Append)
.save("/hudi_data/person_infos3")
查询Hive表 peson3_ro数据
查询Hive表 person3_rt数据
四、SparkSQL操作映射的Hive表
将Hudi数据映射到Hive后,我们可以使用SparkSQL来进行操作Hive表进行处理。操作代码如下:
val session: SparkSession = SparkSession.builder().master("local").appName("test")
.config("hive.metastore.uris", "thrift://node1:9083")
.enableHiveSupport()
.getOrCreate()
session.sql("use default")
session.sql(
"""
| select id,name,age,loc,data_dt from person3_rt
""".stripMargin).show()
session.sql(
"""
| select sum(age) as totalage from person3_rt
""".stripMargin).show()
我们可以看到如果针对Hudi表中的数据进行修改,那么SpakSQL读取到的就是最新修改后的结果数据。
相关推荐
- Micheal Nielsen's神经网络学习之二
-
依然是跟着MichaelNielsen的神经网络学习,基于前一篇的学习,已经大概明白了神经网络的基本结构和BP算法,也能通过神经网络训练数字识别功能,之后我试验了一下使用神经网络训练之前的文本分类,...
- CocoaPods + XCTest进行单元测试 c单元测试工具
-
在使用XCTest进行单元测试时,我们经常会遇到一些CocoaPods中的开源框架的调用,比如“Realm”或“Alamofire”在测试的时候,如果配置不当,会导致“frameworknotfo...
- Java基础知识回顾第四篇 java基础讲解
-
1、&和&&的区别作为逻辑运算符:&(不管左边是什么,右边都参与运算),&&(如果左边为false,右边则不参与运算,短路)另外&可作为位运算符...
- 项目中的流程及类似业务的设计模式总结
-
说到业务流程,可能是我做过的项目中涉及业务最多的一个方面了。除了在流程设计之外,在一些考核系统、产业审批、还有很多地方,都用到相似的设计思路,在此一并总结一下。再说到模式,并不是因为流行才用这个词,而...
- 联想三款显示器首批获得 Eyesafe Certified 2.0 认证
-
IT之家7月31日消息,据外媒报道,三款全新联想显示器是全球首批满足EyesafeCertified2.0的设备。据报道,联想获得EyesafeCertified2.0认证的显...
- maven的生命周期,插件介绍(二) 一个典型的maven构建生命周期
-
1.maven生命周期一个完整的项目构建过程通常包括清理、编译、测试、打包、集成测试、验证、部署等步骤,Maven从中抽取了一套完善的、易扩展的生命周期。Maven的生命周期是抽象的,其中的具体任务都...
- 多线程(3)-基于Object的线程等待与唤醒
-
概述在使用synchronized进行线程同步中介绍了依赖对象锁定线程,本篇文章介绍如何依赖对象协调线程。同synchronized悲观锁一样,线程本身不能等待与唤醒,也是需要对象才能完成等待与唤醒的...
- jquery mobile + 百度地图 + phonegap 写的一个"校园助手"的app
-
1jquerymobile+百度地图+phonegap写的一个"校园助手"的app,使用的是基于Flat-UI的jQueryMobile,请参考:https://github.com/...
- Apache 服务启动不了 apache系统服务启动不了
-
{我是新手,从未遇到此问题,请各位大大勿喷}事由:今天早上上班突然发现公司网站出现问题。经过排查,发现是Apache出现问题。首先检查配置文件没有出问题后,启动服务发现Apache服务能启动,但是没法...
- 健康债和技术债都不能欠 公众号: 我是攻城师(woshigcs)
-
在Solr4.4之后,Solr提供了SolrCloud分布式集群的模式,它带来的主要好处是:(1)大数据量下更高的性能(2)更好扩展性(3)更高的可靠性(4)更简单易用什么时候应该使用Sol...
- Eye Experience怎么用?HTC告诉你 eyebeam怎么用
-
IT之家(www.ithome.com):EyeExperience怎么用?HTC告诉你HTC上周除了发布HTCDesireEYE自拍机和HTCRE管状运动相机之外,还发布了一系列新的智能手机...
- Android系统应用隐藏和应用禁止卸载
-
1、应用隐藏与禁用Android设置中的应用管理器提供了一个功能,就是【应用停用】功能,这是针对某些系统应用的。当应用停用之后,应用的图标会被隐藏,但apk还是存在,不会删除,核心接口就是Packag...
- 计算机软件技术分享--赠人玫瑰,手遗余香
-
一、Netty介绍Netty是由JBOSS提供的一个java开源框架。Netty提供异步的、事件驱动的网络应用程序框架和工具,用以快速开发高性能、高可靠性的网络服务器和客户端程序。也就是说,Netty...
- Gecco爬虫框架的线程和队列模型 爬虫通用框架
-
简述爬虫在抓取一个页面后一般有两个任务,一个是解析页面内容,一个是将需要继续抓取的url放入队列继续抓取。因此,当爬取的网页很多的情况下,待抓取url的管理也是爬虫框架需要解决的问题。本文主要说的是g...
- 一点感悟(一) 初识 初读感知的意思
-
时间过得很快,在IT业已从业了两年多。人这一辈子到底需要什么,在路边看着人来人往,大部分人脸上都是很匆忙。上海真是一个魔都,它有魅力,有底蕴,但是一个外地人在这里扎根置业,真的是举全家之力,还贷3...
- 一周热门
-
-
Boston Dynamics Founder to Attend the 2024 T-EDGE Conference
-
IDC机房服务器托管可提供的服务
-
详解PostgreSQL 如何获取当前日期时间
-
新版腾讯QQ更新Windows 9.9.7、Mac 6.9.25、Linux 3.2.5版本
-
一文看懂mysql时间函数now()、current_timestamp() 和sysdate()
-
流星蝴蝶剑:76邵氏精华版,强化了流星,消失了蝴蝶
-
PhotoShop通道
-
查看 CAD文件,电脑上又没装AutoCAD?这款CAD快速看图工具能帮你
-
WildBit Viewer 6.13 快速的图像查看器,具有幻灯片播放和编辑功能
-
光与灯具的专业术语 你知多少?
-
- 最近发表
-
- Micheal Nielsen's神经网络学习之二
- CocoaPods + XCTest进行单元测试 c单元测试工具
- Java基础知识回顾第四篇 java基础讲解
- 项目中的流程及类似业务的设计模式总结
- 联想三款显示器首批获得 Eyesafe Certified 2.0 认证
- maven的生命周期,插件介绍(二) 一个典型的maven构建生命周期
- 多线程(3)-基于Object的线程等待与唤醒
- jquery mobile + 百度地图 + phonegap 写的一个"校园助手"的app
- Apache 服务启动不了 apache系统服务启动不了
- 健康债和技术债都不能欠 公众号: 我是攻城师(woshigcs)
- 标签列表
-
- serv-u 破解版 (19)
- huaweiupdateextractor (27)
- thinkphp6下载 (25)
- mysql 时间索引 (31)
- mydisktest_v298 (34)
- sql 日期比较 (26)
- document.appendchild (35)
- 头像打包下载 (61)
- oppoa5专用解锁工具包 (23)
- acmecadconverter_8.52绿色版 (39)
- oracle timestamp比较大小 (28)
- f12019破解 (20)
- np++ (18)
- 魔兽模型 (18)
- java面试宝典2019pdf (17)
- beamoff下载 (17)
- unity shader入门精要pdf (22)
- word文档批量处理大师破解版 (36)
- pk10牛牛 (22)
- server2016安装密钥 (33)
- mysql 昨天的日期 (37)
- 加密与解密第四版pdf (30)
- pcm文件下载 (23)
- jemeter官网 (31)
- iteye (18)