百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

不得不学!从零到一搭建ELK日志,Docker环境下部署 logstash工具

csdh11 2025-04-08 13:13 13 浏览

持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第6天,点击查看活动详情

前言

大家好,我是小郭,最近在玩 ELK 日志平台,它是 Elastic 公司推出的一整套日志收集、分析和展示的解决方案。

只有学习了,操作了才能算真正的学会使用了,虽然看起来简单,但是里面的流程步骤还是很多的,将步骤和遇到的问

题记录和总结下,今天主要分享下在Docker环境下部署 logstash 日志收集工具。

# 从零到一搭建ELK日志,在Docker环境下部署 Elasticsearch 数据库

# 从零到一搭建ELK日志,在Docker环境下部署 Kibana 可视化工具

# 从零到一搭建ELK日志,在Docker环境下部署 Filebeat 日志收集工具

什么是 logstash?

Logstash是具有实时流水线能力的开源的数据收集引擎。Logstash可以动态统一不同来源的数据,并将数据标准化到您选择的目标输出。它提供了大量插件,可帮助我们解析,丰富,转换和缓冲任何类型的数据。

工作方式

管道(Logstash Pipeline)是Logstash中独立的运行单元,每个管道都包含两个必须的元素输入(input)和输出(output),和一个可选的元素过滤器(filter),事件处理管道负责协调它们的执行。

输入和输出支持编解码器,使您可以在数据进入或退出管道时对其进行编码或解码,而不必使用单独的过滤器。如:json、multiline等

inputs(输入阶段):

Logstash 支持各种输入选择,可以同时从众多常用来源捕捉事件。

包括:file、kafka、beats等

filters(筛选阶段):

数据从源传输到存储库的过程中,Logstash 筛选器能够解析各个事件,识别已命名的字段以构建结构,并将它们转换成通用格式,以便进行更强大的分析和实现商业价值。

包括:

  • 利用 Grok 从非结构化数据中派生出结构
  • 简化整体处理,不受数据源、格式或架构的影响等

outputs(输出阶段):

将事件数据发送到特定的目的地,完成了所以输出处理,改事件就完成了执行。

如:elasticsearch、file、redis等

Codecs(解码器):

基本上是流过滤器,作为输入和输出的一部分进行操作,可以轻松地将消息的传输与序列化过程分开。

扩展

Logstash 采用可插拔框架,拥有 200 多个插件。您可以将不同的输入选择、筛选器和输出选择混合搭配、精心安排,让它们在管道中和谐地运行。

部署 logstash 日志收集工具

logstash的部署方式有很多种,一般情况下我们可以采用下载 logstash 安装包的方式去启动。

但是官方为我们提供了Docker的部署方式,我比较倾向于利用Docker来进行管理。

  1. 安装Logstash镜像
docker pull docker.elastic.co/logstash/logstash:7.7.1
复制代码
  1. 创建文件目录和配置文件

创建文件夹

mkdir -p /data/elk/logstash/config

mkdir -p /data/elk/logstash/pipeline
复制代码

创建配置文件

logstash.yml 放在/data/elk/logstash/config

touch logstash.yml

vi logstash.yml

config:
  reload:
    automatic: true
    interval: 3s
xpack:
  management.enabled: false
  monitoring.enabled: false
复制代码

配置文件 pipelines.yml

放在/data/elk/logstash/config

在这里我们可以配置多个管道信息,来收集不同的信息

touch pipelines.yml

vi pipelines.yml

- pipeline.id: logstash_dev
  path.config: /usr/share/logstash/pipeline/logstash_dev.conf
复制代码

配置文件 logstash_dev.conf

放在
/data/elk/logstash/pipeline下

touch logstash_dev.conf

vi logstash_dev.conf

input {
  beats {
    port => 9900
  }
}
 
filter {
  grok {
    match => { "message" => "%{COMBINEDAPACHELOG}" }
  }
 
  mutate {
    convert => {
      "bytes" => "integer"
    }
  }
 
  geoip {
    source => "clientip"
  }
 
  useragent {
    source => "user_agent"
    target => "useragent"
  }
 
  date {
    match => ["timestamp", "dd/MMM/yyyy:HH:mm:ss Z"]
  }
}
 
output {
  stdout { }
 
  elasticsearch {
    hosts => ["127.0.0.1:9200"]
    index => "xiaoguo_test_example"
  }
}
复制代码

注意了,在这里我们可以配置索引的名称,以方便我们后面在查看

  1. 启动容器

最重要的一个环节来了,成败在此一举

docker run -d -it --restart=always  --privileged=true  --name=logstash -p 5047:5047 -p 9600:9600 -v /data/elk/logstash/pipeline/:/usr/share/logstash/pipeline/      -v /data/elk/logstash/config/:/usr/share/logstash/config/ docker.elastic.co/logstash/logstash:7.7.1
复制代码

指令可能存在换行的问题,可以先复制出来去掉换行

启动结果:

  1. 验证是否启动成功

通过docker logs id 来看logstash是否启动成功

看到Successfully就表示成功了

  1. 修改 filebeat 配置文件

在前面的文章中我们已经将FlieBeat + Es + Kibana 的合并操作

我们只需要修改 filebeat 配置文件 filebeat.yml

将输出地址更改为我们部署的 logstash 地址

filebeat.inputs:
- type: log
  enabled: true
  paths:
    - /usr/share/filebeat/logs/*

output.logstash:
  hosts: ["ip:9900"]
复制代码
  1. 查询是否生成索引
curl http://localhost:9200/_cat/indices?v 
复制代码

看到自定义名称的那个索引,就表示成功了

  1. 上Kibana查看

总结

我们主要完成在Docker环境下部署 logstash 日志收集工具,他是搭建ELK日志非常重要的一部分,上一篇文章Filebeat日志收集完成之后,将数据写入 Elasticsearch 后用 Kibana 进行可视化展示,现在我们已经完成了

Filebeat 收集数据写入 logstash处理,再将数据写入 Elasticsearch 后 Kibana 进行可视化展示的全过程。

欢迎大家评论、点赞、收藏~

如有不对的地方欢迎指出!

相关推荐

探索Java项目中日志系统最佳实践:从入门到精通

探索Java项目中日志系统最佳实践:从入门到精通在现代软件开发中,日志系统如同一位默默无闻却至关重要的管家,它记录了程序运行中的各种事件,为我们排查问题、监控性能和优化系统提供了宝贵的依据。在Java...

用了这么多年的java日志框架,你真的弄懂了吗?

在项目开发过程中,有一个必不可少的环节就是记录日志,相信只要是个程序员都用过,可是咱们自问下,用了这么多年的日志框架,你确定自己真弄懂了日志框架的来龙去脉嘛?下面笔者就详细聊聊java中常用日志框架的...

物理老师教你学Java语言(中篇)(物理专业学编程)

第四章物质的基本结构——类与对象...

一文搞定!Spring Boot3 定时任务操作全攻略

各位互联网大厂的后端开发小伙伴们,在使用SpringBoot3开发项目时,你是否遇到过定时任务实现的难题呢?比如任务调度时间不准确,代码报错却找不到方向,是不是特别头疼?如今,随着互联网业务规模...

你还不懂java的日志系统吗 ?(java的日志类)

一、背景在java的开发中,使用最多也绕不过去的一个话题就是日志,在程序中除了业务代码外,使用最多的就是打印日志。经常听到的这样一句话就是“打个日志调试下”,没错在日常的开发、调试过程中打印日志是常干...

谈谈枚举的新用法--java(java枚举的作用与好处)

问题的由来前段时间改游戏buff功能,干了一件愚蠢的事情,那就是把枚举和运算集合在一起,然后运行一段时间后buff就出现各种问题,我当时懵逼了!事情是这样的,做过游戏的都知道,buff,需要分类型,且...

你还不懂java的日志系统吗(javaw 日志)

一、背景在java的开发中,使用最多也绕不过去的一个话题就是日志,在程序中除了业务代码外,使用最多的就是打印日志。经常听到的这样一句话就是“打个日志调试下”,没错在日常的开发、调试过程中打印日志是常干...

Java 8之后的那些新特性(三):Java System Logger

去年12月份log4j日志框架的一个漏洞,给Java整个行业造成了非常大的影响。这个事情也顺带把log4j这个日志框架推到了争议的最前线。在Java领域,log4j可能相对比较流行。而在log4j之外...

Java开发中的日志管理:让程序“开口说话”

Java开发中的日志管理:让程序“开口说话”日志是程序员的朋友,也是程序的“嘴巴”。它能让程序在运行过程中“开口说话”,告诉我们它的状态、行为以及遇到的问题。在Java开发中,良好的日志管理不仅能帮助...

吊打面试官(十二)--Java语言中ArrayList类一文全掌握

导读...

OS X 效率启动器 Alfred 详解与使用技巧

问:为什么要在Mac上使用效率启动器类应用?答:在非特殊专业用户的环境下,(每天)用户一般可以在系统中进行上百次操作,可以是点击,也可以是拖拽,但这些只是过程,而我们的真正目的是想获得结果,也就是...

Java中 高级的异常处理(java中异常处理的两种方式)

介绍异常处理是软件开发的一个关键方面,尤其是在Java中,这种语言以其稳健性和平台独立性而闻名。正确的异常处理不仅可以防止应用程序崩溃,还有助于调试并向用户提供有意义的反馈。...

【性能调优】全方位教你定位慢SQL,方法介绍下!

1.使用数据库自带工具...

全面了解mysql锁机制(InnoDB)与问题排查

MySQL/InnoDB的加锁,一直是一个常见的话题。例如,数据库如果有高并发请求,如何保证数据完整性?产生死锁问题如何排查并解决?下面是不同锁等级的区别表级锁:开销小,加锁快;不会出现死锁;锁定粒度...

看懂这篇文章,你就懂了数据库死锁产生的场景和解决方法

一、什么是死锁加锁(Locking)是数据库在并发访问时保证数据一致性和完整性的主要机制。任何事务都需要获得相应对象上的锁才能访问数据,读取数据的事务通常只需要获得读锁(共享锁),修改数据的事务需要获...