百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

高性能并发队列Disruptor使用详解

csdh11 2025-03-28 16:01 18 浏览

基本概念

  • Disruptor是一个高性能的异步处理框架,是一个轻量的Java消息服务JMS, 能够在无锁的情况下实现队列的并发操作
  • Disruptor使用环形数组实现了类似队列的功能,并且是一个有界队列.通常应用于生产者-消费者的场景
  • Disruptor是一个观察者模式的实现
  • Disruptor通过以下三种设计方案解决性能问题: 环形数组结构: 为了避免垃圾回收,使用数组代替链表 数组对处理器的缓存机制更加友好 元素位置定位: 数组长度为2^n^, 可以通过位运算,提升定位的速度 数组中元素下标采用递增的形式 index采用long类型,不用担心索引index溢出问题 无锁设计: 每个生产者或者消费者线程,会首先申请可以操作的元素在数组中的位置,如果申请成功,直接在申请到的位置上写入数据或者读取数据
  • DisruptorBlockingQueue比较: BlockingQueue: FIFO队列.生产者Producer向队列中发布publish一个事件时,消费者Consumer能够获取到通知.如果队列中没有消费的事件,消费者就会被阻塞,直到生产者发布新的事件 Disruptor可以比BlockingQueue做到更多: Disruptor队列中同一个事件可以有多个消费者,消费者之间既可以并行处理,也可以形成依赖图相互依赖,按照先后次序进行处理 Disruptor可以预分配用于存储事件内容的内存空间 Disruptor使用极度优化和无锁的设计实现极高性能的目标
  • 通常情况下,如果存在两个独立的处理过程的线程时,就可以使用高性能的并发队列Disruptor来实现
  • Disruptor的优点: 使用无锁的队列实现并发操作,性能非常高 所有访问者都记录自身序号的实现方式,允许多个生产者和多个消费者共享相同的数据结构 在每个对象,包括RingBuffer,WaitStrategy, 生产者Producer和消费者Consumer中都能跟踪序列号,使用了缓存行填充cache line padding, 这样就没有伪共享和非预期的竞争

Disruptor应用

定义事件

  • Event: 事件 .Disruptor队列中进行交换的数据类型

定义事件工厂

  • Event Factory: 定义事件Event实例化方法,用来实例化一个事件Event. 需要实现接口com.lmax.disruptor.EventFactory< t>
  • Disruptor通过事件工厂EventFactoryRingBuffer中预创建事件Event的实例 一个事件实例Event类似于一个数据槽 生产者Producer发布Publish之前,先从Ringbuffer中获取一个事件Event实例 然后生产者Producer向事件Event实例中填充数据,然后再发布到RingBuffer中 最后由消费者Consumer获取事件Event实例并读取实例中的数据

定义事件处理实现

  • 通过实现接口com.lmax.disruptor.EventHandler< t> 定义事件处理的具体实现

定义事件处理的线程池

  • Disruptor通过java.util.concurrent.ExecutorService提供的线程来触发消费者Consumer的事件处理

指定等待策略

  • Disruptor中使用策略模式定义消费者Consumer处理事件的等待策略,通过com.lmax.disruptor.WaitStrategy接口实现
  • WaitStrategy等待策略有三种常用的实现: 每种策略具有不同的性能和优缺点.根据实际运行环境的CPU的硬件特点选择恰当的策略,并且使用特定的JVM配置启动参数,能够实现不同的性能提升 BlockingWaitStrategy: 性能最低 对CPU的消耗最小 能够在不同的部署环境中提供更加一致的性能 SleepingWaitStrategy: 性能以及对CPU的消耗和BlockingWaitStrategy差不多 对生产者线程影响最小 适合应用于异步日志等场景 YieldingWaitStrategy: 性能最高 适合应用于低延迟的系统 在要求极高的性能并且事件处理线程个数小于CPU逻辑核心个数的场景中,推荐使用这个等待策略 比如CPU开启超线程的特性

启动Disruptor

EventFactory eventFactory = new EventFactory();
int ringBufferSize = 1024*1024;

Disruptor disruptor = new Disruptor(eventFactory, ringBufferSize, executor, ProcedureType.SINGLE, blockingWaitStrategy);
EventHandler eventHandler = new EventHandle();
disruptor.handleEventsWith(eventHandler);
disruptor.start();
复制代码

发布事件

  • Disruptor的事件Event的发布Publish过程是一个两阶段提交过程: 第一步: 先从RingBuffer获取下一个可以写入事件的序号 第二步: 获取对应的事件Event对象,将数据写入事件对象 第三步: 将事件提交到RingBuffer
  • Disruptor中要求RingBuffer.publish()方法必须要被调用.也就是说,即使发生异常,也要执行publish()方法,这就要求调用者Producer在事件处理的实现上要判断携带的数据的正确性和完整性

关闭Disruptor

  • disruptor.shutdown() : 关闭Disruptor. 方法会阻塞,直至所有的事件都得到处理
  • executor.shutdown() : 关闭Disruptor使用的线程池. 如果线程池需要关闭,必须进行手动关闭 ,Disruptorshutdown时不会自动关闭使用的线程池

Disruptor原理

核心概念

RingBuffer

  • RingBuffer: 环形缓冲区
  • RingBuffer3.0开始,仅仅负责对通过Disruptor进行交换的事件数据进行存储和更新
  • Disruptor的高级应用场景中 ,RingBuffer可以使用用户自定义的实现来替代

Sequence Disruptor

  • 使用顺序递增的序号来编号管理通过Sequence Disruptor进行交换的事件数据,对事件的处理总是按着序号逐个递增进行处理
  • 使用Sequence用于跟踪标识某个特定的事件处理者,包括RingBufferConsumer的处理进度
  • 使用Sequence来标识进度可以防止不同的Sequence之间的CPU的缓存间的伪共享Flase Sharing问题

Sequencer

  • SequencerDisruptor的核心
  • Sequencer接口有两个实现类: SingleProducerSequencer MultiProducerSequencer 这是定义在生产者和消费者之间快速,正确传递数据的并发算法

Sequence Barrier

  • 用于保持对RingBufferpublished SequenceConsumer依赖的其余的ConsumerSequence引用
  • Sequence Barrier中定义了Consumer是否还有可处理的事件的逻辑

WaitStrategy

  • WaitStrategy定义Consumer等待事件的策略

Event

  • Disruptor中生产者Producer和消费者Consumer之间进行交换的数据叫做事件Event
  • Event类型不是Disruptor定义的,而是由Disruptor的使用者来自定义指定

EventProcessor

  • EventProcessor持有指定的消费者ConsumerSequence, 并且提供用于调用事件处理实现的事件循环EventLoop

EventHandler

  • Disruptor中定义的事件处理接口,由使用者实现,用于事件的具体处理,是消费者Consumer的真正实现

Producer

  • Producer: 生产者. 泛指Disruptor发布事件的调用方.没有在Disruptor中定义特定的接口或者类型

内存预分配

  • RingBuffer使用数组Object[] entries来存储元素: 初始化RingBuffer时,会将所有数组元素entries的指定为特定的事件Event参数,此时Event中的detail属性为null 生产者向RingBuffer写入消息时 ,RingBuffer不是直接将数组元素entries指向Event对象,而是先获取Event对象,更改Event对象中的detail属性 消费者在消费时,也是从RingBuffer中读取Event, 读取Event对象中的detail属性 由此可见,在生产和消费过程中 ,RingBuffer中的数组元素entries没有发生任何变化,没有产生临时对象,数组中的元素一直存活,直到RingBuffer消亡
  • 通过以上方式,可以最小化JVM中的垃圾回收GC的频率,提升性能
private void fill(EventFactory eventFactory) {
	for (int i = 0; i < bufferSize; i++) {
		// 使用工厂方法初始化数组中的entries元素
		entries[BUFFER_PAD + i] = eventFactory.newInstance(); 
	}
}
复制代码

消除伪共享

  • Disruptor中的伪共享: 如果两个相互独立的并发变量位于同一个缓存行时,在并发的情况下,会相互影响彼此的缓存有效性,进而影响并发操作的性能
  • Disruptor中消除伪共享: Sequence.java中使用多个long变量填充,确保一个序号独占一个缓存行
private static class Padding {
	public long nextValue = Sequence.INITIAL_VALUE, cachedValue = Sequence.INITIAL_VALUE, p2, p3, p4, p5, p6, p7; 
}
复制代码

消除锁和CAS操作

  • Disruptor中,通过联合使用SequenceBarrierSequence, 协调和管理消费者和生产者之间的处理关系,避免了锁和CAS操作
  • Disruptor中的各个消费者和生产者持有自己的序号Sequence, 序号Sequence需要满足以下条件: 条件一: 消费者的序号Sequence的数值必须小于生产者的序号Sequence的数值 条件二: 消费者的序号Sequence的数值必须小于依赖关系中前置的消费者的序号Sequence的数值 条件三: 生产者的序号Sequence的数值不能大于消费者正在消费的序号Sequence的数值,防止生产者速度过快,将还没有来得及消费的事件消息覆盖
  • 条件一条件二SequenceBarrier中的waitFor() 方法中实现:
/**
 * 等待给定的序号值可以供消费者使用
 *  
 * @param sequence 消费者期望获取的下一个序号值
 * @return long 可供消费者使用的序号的值
 */
public long waitFor(final long sequence) throws AlertException, InterruptedException, TimeoutException {
	checkALert();

	/**
	 * 根据指定的waitStrategy策略,等待期望的下一序号值可供使用
	 * 这里不一定能保证返回值availableSequence一定和给定的参数sequence的值相等,两者的大小关系取决于使用的等待策略waitStrategy
	 * - YieldingWaitStrategy : 自旋100次后,会直接返回dependentSequence中最小的序号sequence,这是不能保证返回的值大于等于给定的序号值
	 * - BlockingWaitStrategy : 阻塞等待给定的序号sequence值可用为止,可用不是返回的值就等于给定的序号值,而是返回的值大于等于给定的序号值
	 */
	long availableSequence = waitStrategy.waitFor(sequence, cursorSequence, dependentSequence, this);

	// 如果当前可用的序号值小于给定的序号值,就返回当前可用的序号值,此时调用者EventProcessor会继续等待wait
	if (availableSequence < sequence) {
		return sequence;
	}

	// 批处理
	return sequencer.getHighestPublishedSequence(sequence, availableSequence);
}
复制代码
  • 条件三是针对生产者建立的SequenceBarrier,逻辑判定发生在生产者从RingBuffer获取下一个可用的entry时,RingBuffer会将获取下一个可用的entry委托给Sequencer处理:
@Override
public long next() {
	if (n < 1 throw new illegalargumentexceptionn must be> 0");
	}
	long nextValue = this.nextValue;
	// 下一个序号值等于当前序号值加上期望获取的序号数量
	long nextSequence = nextValue + n;
	
	// 使用下一个序号值减掉RingBuffer中的总量值bufferSize,来判断是否会发生覆盖
	long wrapPoint = nextSequence - bufferSize;
	
	/*
	 * cachedValue就是缓存的消费者中的最小序号值
	 * cachedValue不是当前最新的消费者中最小序号值,而是上一次方法调用时进入到下面if条件判断时,被赋值的消费者中最小序号值
	 * 
	 * 这样做可以在判定是否出现覆盖的时候,不需要每次都调用getMinimumSequence计算消费者中的最小序号值,从而节省开销。只要确保
	 * 当生产者的值大于了缓存cachedGatingSequence一个bufferSize时,重新获取一下getMinimumSequence()即可
	 */
	long cachedGatingSequence = this.cachedValue;

	/*
	 * wrapPoint > cachedGatingSequence : 当生产者已经超过上一次缓存的消费者中的最小序号值cachedGatingSequence一个bufferSize大小时,需要重新获取cachedGatingSequence,防止生产者一直生产,消费者没有来得及消费时,发生覆盖的情况
	 * cachedGatingSequence > nextValue : 生产者和消费者的序号值都是顺序递增的,并且生产者的序号Sequence是先于消费者Sequence,这里是先于而不是大于。对于nextValue的值大于了LONG.MAXVALUE时,此时nextValue + 1就会变为负数,wrapPoint值也会变为负数,此时必然cachedGatingSequence > nextValue。 getMinimumSequence()获取的是消费者中最小序号值,但不代表是走在最后的一个消费者
	 */
	if (wrapPoint > cachedGatingSequence || cachedGatingSequence > nextValue) {
		cursor.setVolatile(nextValue);
		long minSequence;
		while (wrapPoint > (minSequence = Util.getMinimumSequence(gatingSequences, nextValue))) {
			// 生产者阻塞,等待消费者消费,直到不会发生覆盖的情况继续向下执行
			LockSupport.parkNanos(1L);
		}
		this.cacheValue = minSequence;
	}
	this.nextValue = nextSequence;
	return nextSequence;
}
复制代码

批处理效应

  • 当出现生产者比消费者过快时,消费者可以通过批处理效应来追赶生产者进度 消费者一次性从RingBuffer中获取多个已经准好的数组事件元素进行消费处理,从而提高消费效率
/**
 * 等待给定的序号值可以供消费者使用
 *  
 * @param sequence 消费者期望获取的下一个序号值
 * @return long 可供消费者使用的序号的值
 */
public long waitFor(final long sequence) throws AlertException, InterruptedException, TimeoutException {
	checkALert();
	long availableSequence = waitStrategy.waitFor(sequence, cursorSequence, dependentSequence, this);
	if (availableSequence < sequence return sequence : - availablesequence> sequence时,需要遍历序号sequence到序号availableSequence,获取到最前面一个准备就绪,可以进行消费的事件Event对应的序号sequence
	 * - 最小值为sequence - 1 
	 */
	return sequencer.getHighestPublishedSequence(sequence, availableSequence);
}


作者:攻城狮Chova
链接:
https://juejin.cn/post/7085677820323561502


相关推荐

探索Java项目中日志系统最佳实践:从入门到精通

探索Java项目中日志系统最佳实践:从入门到精通在现代软件开发中,日志系统如同一位默默无闻却至关重要的管家,它记录了程序运行中的各种事件,为我们排查问题、监控性能和优化系统提供了宝贵的依据。在Java...

用了这么多年的java日志框架,你真的弄懂了吗?

在项目开发过程中,有一个必不可少的环节就是记录日志,相信只要是个程序员都用过,可是咱们自问下,用了这么多年的日志框架,你确定自己真弄懂了日志框架的来龙去脉嘛?下面笔者就详细聊聊java中常用日志框架的...

物理老师教你学Java语言(中篇)(物理专业学编程)

第四章物质的基本结构——类与对象...

一文搞定!Spring Boot3 定时任务操作全攻略

各位互联网大厂的后端开发小伙伴们,在使用SpringBoot3开发项目时,你是否遇到过定时任务实现的难题呢?比如任务调度时间不准确,代码报错却找不到方向,是不是特别头疼?如今,随着互联网业务规模...

你还不懂java的日志系统吗 ?(java的日志类)

一、背景在java的开发中,使用最多也绕不过去的一个话题就是日志,在程序中除了业务代码外,使用最多的就是打印日志。经常听到的这样一句话就是“打个日志调试下”,没错在日常的开发、调试过程中打印日志是常干...

谈谈枚举的新用法--java(java枚举的作用与好处)

问题的由来前段时间改游戏buff功能,干了一件愚蠢的事情,那就是把枚举和运算集合在一起,然后运行一段时间后buff就出现各种问题,我当时懵逼了!事情是这样的,做过游戏的都知道,buff,需要分类型,且...

你还不懂java的日志系统吗(javaw 日志)

一、背景在java的开发中,使用最多也绕不过去的一个话题就是日志,在程序中除了业务代码外,使用最多的就是打印日志。经常听到的这样一句话就是“打个日志调试下”,没错在日常的开发、调试过程中打印日志是常干...

Java 8之后的那些新特性(三):Java System Logger

去年12月份log4j日志框架的一个漏洞,给Java整个行业造成了非常大的影响。这个事情也顺带把log4j这个日志框架推到了争议的最前线。在Java领域,log4j可能相对比较流行。而在log4j之外...

Java开发中的日志管理:让程序“开口说话”

Java开发中的日志管理:让程序“开口说话”日志是程序员的朋友,也是程序的“嘴巴”。它能让程序在运行过程中“开口说话”,告诉我们它的状态、行为以及遇到的问题。在Java开发中,良好的日志管理不仅能帮助...

吊打面试官(十二)--Java语言中ArrayList类一文全掌握

导读...

OS X 效率启动器 Alfred 详解与使用技巧

问:为什么要在Mac上使用效率启动器类应用?答:在非特殊专业用户的环境下,(每天)用户一般可以在系统中进行上百次操作,可以是点击,也可以是拖拽,但这些只是过程,而我们的真正目的是想获得结果,也就是...

Java中 高级的异常处理(java中异常处理的两种方式)

介绍异常处理是软件开发的一个关键方面,尤其是在Java中,这种语言以其稳健性和平台独立性而闻名。正确的异常处理不仅可以防止应用程序崩溃,还有助于调试并向用户提供有意义的反馈。...

【性能调优】全方位教你定位慢SQL,方法介绍下!

1.使用数据库自带工具...

全面了解mysql锁机制(InnoDB)与问题排查

MySQL/InnoDB的加锁,一直是一个常见的话题。例如,数据库如果有高并发请求,如何保证数据完整性?产生死锁问题如何排查并解决?下面是不同锁等级的区别表级锁:开销小,加锁快;不会出现死锁;锁定粒度...

看懂这篇文章,你就懂了数据库死锁产生的场景和解决方法

一、什么是死锁加锁(Locking)是数据库在并发访问时保证数据一致性和完整性的主要机制。任何事务都需要获得相应对象上的锁才能访问数据,读取数据的事务通常只需要获得读锁(共享锁),修改数据的事务需要获...