百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

Hive最全总结,学习与面试,收藏这一篇就够了!

csdh11 2025-03-26 11:13 20 浏览

Hive基础概念和用途

Hive是Hadoop下的顶级 Apache项目,早期的Hive开发工作始于2007年的 Facebook。

Apache Hive是一款建立在Hadoop之上的开源数据仓库系统,可以将存储在Hadoop文件中的结构化、半结构化

数据文件映射为一张数据库表,基于表提供了一种类似SQL的查询模型,称为Hive查询语言(HQL),用于访问和分析存储在Hadoop文件中的大型数据集。

Hive核心是将HQL转换为MapReduce程序,然后将程序提交到Hadoop群集执行。

Hive由Facebook实现并开源。

Hive的优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。Hive是一个数据仓库基础工具在Hadoop中用来处理结构化数据。它架构在Hadoop之上,总归为大数据,并使得查询和分析方便。

Apache Hive架构图


Hive组件

用户接口:包括 CLI、JDBC/ODBC、WebGUI。其中,CLI(command line interface)为shell命令行;JDBC/ODBC是Hive的JAVA实现,与传统数据库JDBC类似;WebGUI是通过浏览器访问Hive。

元数据存储:通常是存储在关系数据库如 mysql/derby中。Hive 将元数据存储在数据库中。Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。

解释器、编译器、优化器、执行器:完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在 HDFS 中,并在随后有 MapReduce 调用执行。

执行引擎 : Hive本身并不直接处理数据文件。而是通过执行引擎处理。当下Hive支持MapReduce、Tez、Spark3种执行引擎。

Hive与Hadoop的关系

简单说就是Hive利用HDFS存储数据,利用MapReduce查询分析数据。

从功能来说,数据仓库软件,至少需要具备下述两种能力:

存储数据的能力、分析数据的能力

Apache Hive作为一款大数据时代的数据仓库软件,当然也具备上述两种能力。只不过Hive并不是自己实现了上述

两种能力,而是借助Hadoop。

Hive利用HDFS存储数据,利用MapReduce查询分析数据

这样突然发现Hive没啥用,不过是套壳Hadoop罢了。其实不然,Hive的最大的魅力在于用户专注于编写HQL,

Hive帮您转换成为MapReduce程序完成对数据的分析。

Apache hive的技术特点

特点:

操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手)。

Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合。

Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。

Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。

Hive应用场景

总的来说,Hive是十分适合数据仓库的统计分析和Windows注册表文件。 Hive在Hadoop中扮演数据仓库的角色。Hive添加数据的结构在HDFS(Hive superimposes structure on data in HDFS),并允许使用类似于SQL语法进行数据查询。 Hive更适合于数据仓库的任务,主要用于静态的结构以及需要经常分析的工作。Hive与SQL相似促使其成为Hadoop与其他BI工具结合的理想交集。

Hive与传统的关系型数据库对比

大规模数据处理的技术了解越多,对操作系统的体会越深。以下是一些基础操作
大数据Hadoop入门教程

场景设计--Hive功能模拟实现底层猜想

Apache hive--架构图、各组件功能

Apache hive安装部署--metadata与metastore、远程模式介绍

Apache hive安装部署--与Hadoop整合、MySQL安装

Apache hive安装部署--配置文件修改编辑

Apache hive安装部署--metastore服务启动方式

Apache hive--新老客户端使用与hiveserver2服务

Apache hive--DataGrip连接Hiveserver2

Apache hive--数据库与建库、切换库操作

Apache hive--表与建表sql语句--数据类型、分隔符指定语法

Apache hive--表与建表sql语句--默认分隔符使用

Apache hive--常见的show语法

Apache hive--注释comment中文乱码解决

大数据相关:

大数据核心基础
大数据Hadoop入门教程

大数据开发
Linux零基础快速入门到精通
大数据数据开发基础MySQL8.0从入门到精通

大数据spark3.2从基础到精通

大数据Hive+Spark离线数仓工业项目实战

大数据开发编程语言:
Python入门到精通(19天全)

Python编程进阶从零到搭建网站

Python+大数据进阶教程6天掌握NoSQL实时计算基础

大数据面试八股文之Hive篇

01 Hive的三种自定义函数是什么?它们之间的区别是什么?

  • UDF:用户自定义函数,user defined function。一对一的输入输出。
  • UDTF:用户自定义表生成函数。user defined table-generate function.一对多的输入输出。
  • UDAF:用户自定义聚合函数。user defined aggregate function,多对一的输入输出比如count sum等。

02 Hive SQL语句的执行顺序

如果上来就抛给你 “select from where group by having order by” 的执行顺序

平时没有仔细研究过,这题还真不好猜。

实际上,在 hive 和 mysql 中都可以通过 explain+sql 语句,来查看执行顺序。对于一条标准 sql 语句,它的书写顺序是这样的:

select … from … where … group by … having … order by … limit …

(1)mysql 语句执行顺序:

from... where...group by... having.... select ... order by... limit …

(2)hive 语句执行顺序:

from … where … select … group by … having … order by … limit …

根据执行顺序,平时编写时需要记住以下几点: 使用分区剪裁、列剪裁,分区一定要加 少用 COUNT DISTINCT,group by 代替 distinct 是否存在多对多的关联 连接表时使用相同的关键词,这样只会产生一个 job 减少每个阶段的数据量,只选出需要的,在 join 表前就进行过滤 大表放后面 谓词下推:where 谓词逻辑都尽可能提前执行,减少下游处理的数据量 sort by 代替 order by

03 hive内部表和外部表的区别

未被external修饰的是内部表,被external修饰的为外部表。

区别:

  • 内部表数据由Hive自身管理,外部表数据由HDFS管理;
  • 内部表数据存储的位置是hive.metastore.warehouse.dir(默认:/user/hive/warehouse), 外部表数据的存储位置由自己制定(如果没有LOCATION,Hive将在HDFS上的/user/hive/warehouse文件夹下以外部表的表名创建一个文件夹,并将属于这个表的数据存放在这里);
  • 删除内部表会直接删除元数据(metadata)及存储数据;删除外部表仅仅会删除元数据,HDFS上的文件并不会被删除。

04 为什么要对数据仓库分层

  • 用空间换时间,通过大量的预处理来提升应用系统的用户体验(效率),因此数据仓库会 存在大量冗余的数据。如果不分层的话,如果源业务系统的业务规则发生变化将会影响整个数据清洗过程,工作量巨大。
  • 通过数据分层管理可以简化数据清洗的过程,因为把原来一步的工作分到了多个步骤去完成,相当于把一个复杂的工作拆成了多个简单的工作,把一个大的黑盒变成了一个白盒,每一层的处理逻辑都相对简单和容易理解,这样我们比较容易保证每一个步骤的正确性,当数据发生错误的时候,往往我们只需要局部调整某个步骤即可。

05 Hive 小文件过多怎么解决

  • 使用 hive 自带的 concatenate 命令,自动合并小文件
  • 调整参数减少Map数量
  • 减少Reduce的数量
  • 使用hadoop的archive将小文件归档

06 Hive有哪些方式保存元数据,各有哪些特点?

Hive支持三种不同的元存储服务器,分别为:内嵌式元存储服务器、本地元存储服务器、远程元存储服务器,每种存储方式使用不同的配置参数。

  • 内嵌式元存储主要用于单元测试,在该模式下每次只有一个进程可以连接到元存储,Derby是内嵌式元存储的默认数据库。
  • 在本地模式下,每个Hive客户端都会打开到数据存储的连接并在该连接上请求SQL查询。
  • 在远程模式下,所有的Hive客户端都将打开一个到元数据服务器的连接,该服务器依次查询元数据,元数据服务器和客户端之间使用Thrift协议通信

07 Hive的函数:UDF、UDAF、UDTF的区别?

  • UDF:单行进入,单行输出
  • UDAF:多行进入,单行输出
  • UDTF:单行输入,多行输出

08 Hive底层与数据库交互原理?

Hive 的查询功能是由 HDFS 和 MapReduce结合起来实现的,对于大规模数据查询还是不建议在 hive 中,因为过大数据量会造成查询十分缓慢。Hive 与 MySQL的关系:只是借用 MySQL来存储 hive 中的表的元数据信息,称为 metastore(元数据信息)。

09 hive中都有哪些join操作?

  • left join:以左侧为主表,返回记录与主表记录数相同,关联不上的字段为空。
  • right join:以右侧表为主表,返回记录与主表记录数相同,关联不上的字段为空。
  • full join:以两个表的记录为基准,返回两个表的记录去重之和,关联不上的字段为null。
  • cross join:返回两个表的笛卡尔积结果,不需要指定关联键。
  • map join map端连接,与普通连接的区别是这个连接中不会有reduce阶段存在,连接在map端完成。
  • common join:普通连接,在sql中不特殊指定连接方式使用的都是这种普通连接。
  • skew join:倾斜连接,主要针对数据倾斜的情况优化。
  • bucket map join:分桶连接。

10 hive 如何优化?

  • join 优化,尽量将小表放在 join 的左边,如果一个表很小可以采用 mapjoin。
  • 排序优化,order by 一个 reduce 效率低,distirbute by +sort by 也可以实现全局排序。
  • 使用分区,查询时可减少数据的检索,从而节省时间。

相关推荐

探索Java项目中日志系统最佳实践:从入门到精通

探索Java项目中日志系统最佳实践:从入门到精通在现代软件开发中,日志系统如同一位默默无闻却至关重要的管家,它记录了程序运行中的各种事件,为我们排查问题、监控性能和优化系统提供了宝贵的依据。在Java...

用了这么多年的java日志框架,你真的弄懂了吗?

在项目开发过程中,有一个必不可少的环节就是记录日志,相信只要是个程序员都用过,可是咱们自问下,用了这么多年的日志框架,你确定自己真弄懂了日志框架的来龙去脉嘛?下面笔者就详细聊聊java中常用日志框架的...

物理老师教你学Java语言(中篇)(物理专业学编程)

第四章物质的基本结构——类与对象...

一文搞定!Spring Boot3 定时任务操作全攻略

各位互联网大厂的后端开发小伙伴们,在使用SpringBoot3开发项目时,你是否遇到过定时任务实现的难题呢?比如任务调度时间不准确,代码报错却找不到方向,是不是特别头疼?如今,随着互联网业务规模...

你还不懂java的日志系统吗 ?(java的日志类)

一、背景在java的开发中,使用最多也绕不过去的一个话题就是日志,在程序中除了业务代码外,使用最多的就是打印日志。经常听到的这样一句话就是“打个日志调试下”,没错在日常的开发、调试过程中打印日志是常干...

谈谈枚举的新用法--java(java枚举的作用与好处)

问题的由来前段时间改游戏buff功能,干了一件愚蠢的事情,那就是把枚举和运算集合在一起,然后运行一段时间后buff就出现各种问题,我当时懵逼了!事情是这样的,做过游戏的都知道,buff,需要分类型,且...

你还不懂java的日志系统吗(javaw 日志)

一、背景在java的开发中,使用最多也绕不过去的一个话题就是日志,在程序中除了业务代码外,使用最多的就是打印日志。经常听到的这样一句话就是“打个日志调试下”,没错在日常的开发、调试过程中打印日志是常干...

Java 8之后的那些新特性(三):Java System Logger

去年12月份log4j日志框架的一个漏洞,给Java整个行业造成了非常大的影响。这个事情也顺带把log4j这个日志框架推到了争议的最前线。在Java领域,log4j可能相对比较流行。而在log4j之外...

Java开发中的日志管理:让程序“开口说话”

Java开发中的日志管理:让程序“开口说话”日志是程序员的朋友,也是程序的“嘴巴”。它能让程序在运行过程中“开口说话”,告诉我们它的状态、行为以及遇到的问题。在Java开发中,良好的日志管理不仅能帮助...

吊打面试官(十二)--Java语言中ArrayList类一文全掌握

导读...

OS X 效率启动器 Alfred 详解与使用技巧

问:为什么要在Mac上使用效率启动器类应用?答:在非特殊专业用户的环境下,(每天)用户一般可以在系统中进行上百次操作,可以是点击,也可以是拖拽,但这些只是过程,而我们的真正目的是想获得结果,也就是...

Java中 高级的异常处理(java中异常处理的两种方式)

介绍异常处理是软件开发的一个关键方面,尤其是在Java中,这种语言以其稳健性和平台独立性而闻名。正确的异常处理不仅可以防止应用程序崩溃,还有助于调试并向用户提供有意义的反馈。...

【性能调优】全方位教你定位慢SQL,方法介绍下!

1.使用数据库自带工具...

全面了解mysql锁机制(InnoDB)与问题排查

MySQL/InnoDB的加锁,一直是一个常见的话题。例如,数据库如果有高并发请求,如何保证数据完整性?产生死锁问题如何排查并解决?下面是不同锁等级的区别表级锁:开销小,加锁快;不会出现死锁;锁定粒度...

看懂这篇文章,你就懂了数据库死锁产生的场景和解决方法

一、什么是死锁加锁(Locking)是数据库在并发访问时保证数据一致性和完整性的主要机制。任何事务都需要获得相应对象上的锁才能访问数据,读取数据的事务通常只需要获得读锁(共享锁),修改数据的事务需要获...