Edge AI Will Transform the Technological Foundation of Industrial Intelligence
csdh11 2025-03-20 13:48 12 浏览
Zhao Hejuan, Founder & CEO of TMTPost Group
TMTPOST -- I, as a longtime researcher, analyst, and entrepreneur in AI applications, delivered a speech and shared my views on edge AI at a forum named “AI Computing Power Development” hosted by the World Internet Conference on Tuesday. The forum, with a theme of "Building an Integrated, Inclusive, and Green AI Computing Power Ecosystem," was part of the Mobile World Congress 2025 held in Barcelona, Spain from Monday through Thursday.
The full transcript of my speech is as follows:
Distinguished leaders, industry pioneers, ladies and gentlemen,
Good morning!
I am Zhao Hejuan, Founder & CEO of TMTPost Group. It is my great honor to join the AI Computing Power Development Forum in MWC.
As a longtime researcher, analyst, and entrepreneur in AI applications, I would like to share some of my observations on how the edge AI model or on-device AI model is reshaping industrial intelligence, which will have three parts: the rise of edge AI, the key challenges for edge AI and China's unique advantages in edge AI.
Firstly, about the rise of edge AI
We are at a pivotal moment in the Fourth Industrial Revolution. According to the latest data, the global edge AI device market size has exceeded $60 billion, with a compound annual growth rate (CAGR) of 22%, far surpassing the growth rate of cloud-based AI services.
China accounts for more than 35%, and it is expected to exceed 150 billion US dollars by 2030.
This signals a fundamental shift—AI is moving from centralized cloud computing to real-time edge processing. Gartner projects that by 2025, 75% of enterprise data will be processed at the edge, marking a historic transition from "centralized intelligence" to "distributed intelligence."
Secondly, what will be the key challenges for edge AI?
To fully realize this transformation, three major challenges must be addressed:
1. Model Optimization for Edge Deployment
AI models are growing exponentially—Stanford's AI Index Report states that model parameters increase by 230% annually. Yet, edge AI requires lightweight solutions.
For example:
o Carnegie Mellon University developed a blind navigation ring that compresses environmental recognition models to just 52KB.
o Dutch startup Epitel created an epilepsy warning system in 0.5MB, providing 90-second early alerts while reducing false alarms by 40%.
These breakthroughs prove that smaller AI models can be just as powerful in real-world applications.
2. Continuous Learning and Evolution
AI must continuously improve based on real-world data.
Google's DeepMind lab has unveiled a new AI diagnostic system, "Med-PaLM Oncology," which can identify early signs of 13 types of cancer within 3 seconds. The system has achieved a clinical validation accuracy rate of 96.7%, surpassing that of human doctors.
This aligns with IDC's Edge Intelligence Evolution Theory—when edge devices gain continuous learning capabilities, their efficiency improves exponentially.
3. Breaking Industry Barriers
Edge AI is revolutionizing industrial sectors.
o In Tesla's Shanghai factory, an edge AI vision system has reduced the false alarm rate to 0.5%, increased the detection accuracy rate to 99.98%, and improved the efficiency by five times.
o In Shouguang, eastern China's Shandong province, an edge AI-powered agricultural drone improved pest detection accuracy by 40% and reduced pesticide consumption by 35%.
Gartner predicts that by 2025, the efficiency of local links in the manufacturing industry will increase by 20%-50%.
However, to maximize edge AI’s potential, we must build three essential pillars:
1. A “Data Flywheel” Ecosystem
IDC predicts every day, the world generates 14.849 billion TB of edge data, but less than 15% is utilized.
o In the latest AI smartphone improved local data processing 6x, reducing latency to 8 milliseconds.
o Smart excavators cut energy consumption by 22% using edge decision-making.
2. AI-5G-IoT Integration
According to Boston Consulting Group, integrating AI with 5G and IoT is unlocking new efficiencies:
o At Qingdao Port, a 5G + Edge AI system improved container scheduling efficiency by 40%.
o At Ant Group, Blockchain + Edge AI reduced cross-border payment processing time from hours to seconds.
3. An Open and Collaborative Industry Community
Today, over 200 global open-source edge AI projects exist, with Chinese enterprises contributing 22%.
The Linux Foundation’s 2024 Edge Computing White Paper states that open collaboration can reduce edge AI deployment costs by 60%.
A great example is the Huawei Ascend + SenseTime partnership, which developed a lightweight AI model toolchain, tripling development efficiency.
In the last part, I would like to talk about China’s unique advantages in edge AI.
China is in a strong position in the global Edge AI revolution:
o 37% of global edge AI patents originate from China.
o The deployment rate of edge AI devices on the smart city side exceeds 60%.
o 45% of edge AI applications in industrial quality inspection scenarios.
o By 2025, China's edge computing market is expected to reach 200 billion yuan.
Looking ahead, the future of edge AI isbased on comprehensive forecasts from multiple institutions:
o By 2026, 50% of enterprise edge AI systems will adopt dynamic task allocation strategies.
o By 2027, 90% of edge AI devices will support multimodal interaction.
o By 2030, 30% of industrial edge devices will be equipped with self-learning capabilities.
o Edge AI will boost global GDP by 0.3–0.8 percentage points annually.
This is not just about technological advancement—it is a critical step in transitioning towards an intelligent society.
To conclude, let me share a real-world case from TMTPost’s research—the AI-powered transformation of an automotive factory.
After edge AI was integrated into 287 production steps:
o Per capita output increased by 4.6 times.
o Defect rates dropped to just 3 PPM (parts per million).
This confirms today's core message—when AI computing power reaches the industrial frontline, we unlock not just an efficiency revolution but a fundamental upgrade in human productivity.
Let's work together to drive this silent yet transformative revolution forward.
Thank you!
相关推荐
- 探索Java项目中日志系统最佳实践:从入门到精通
-
探索Java项目中日志系统最佳实践:从入门到精通在现代软件开发中,日志系统如同一位默默无闻却至关重要的管家,它记录了程序运行中的各种事件,为我们排查问题、监控性能和优化系统提供了宝贵的依据。在Java...
- 用了这么多年的java日志框架,你真的弄懂了吗?
-
在项目开发过程中,有一个必不可少的环节就是记录日志,相信只要是个程序员都用过,可是咱们自问下,用了这么多年的日志框架,你确定自己真弄懂了日志框架的来龙去脉嘛?下面笔者就详细聊聊java中常用日志框架的...
- 物理老师教你学Java语言(中篇)(物理专业学编程)
-
第四章物质的基本结构——类与对象...
- 一文搞定!Spring Boot3 定时任务操作全攻略
-
各位互联网大厂的后端开发小伙伴们,在使用SpringBoot3开发项目时,你是否遇到过定时任务实现的难题呢?比如任务调度时间不准确,代码报错却找不到方向,是不是特别头疼?如今,随着互联网业务规模...
- 你还不懂java的日志系统吗 ?(java的日志类)
-
一、背景在java的开发中,使用最多也绕不过去的一个话题就是日志,在程序中除了业务代码外,使用最多的就是打印日志。经常听到的这样一句话就是“打个日志调试下”,没错在日常的开发、调试过程中打印日志是常干...
- 谈谈枚举的新用法--java(java枚举的作用与好处)
-
问题的由来前段时间改游戏buff功能,干了一件愚蠢的事情,那就是把枚举和运算集合在一起,然后运行一段时间后buff就出现各种问题,我当时懵逼了!事情是这样的,做过游戏的都知道,buff,需要分类型,且...
- 你还不懂java的日志系统吗(javaw 日志)
-
一、背景在java的开发中,使用最多也绕不过去的一个话题就是日志,在程序中除了业务代码外,使用最多的就是打印日志。经常听到的这样一句话就是“打个日志调试下”,没错在日常的开发、调试过程中打印日志是常干...
- Java 8之后的那些新特性(三):Java System Logger
-
去年12月份log4j日志框架的一个漏洞,给Java整个行业造成了非常大的影响。这个事情也顺带把log4j这个日志框架推到了争议的最前线。在Java领域,log4j可能相对比较流行。而在log4j之外...
- Java开发中的日志管理:让程序“开口说话”
-
Java开发中的日志管理:让程序“开口说话”日志是程序员的朋友,也是程序的“嘴巴”。它能让程序在运行过程中“开口说话”,告诉我们它的状态、行为以及遇到的问题。在Java开发中,良好的日志管理不仅能帮助...
- OS X 效率启动器 Alfred 详解与使用技巧
-
问:为什么要在Mac上使用效率启动器类应用?答:在非特殊专业用户的环境下,(每天)用户一般可以在系统中进行上百次操作,可以是点击,也可以是拖拽,但这些只是过程,而我们的真正目的是想获得结果,也就是...
- Java中 高级的异常处理(java中异常处理的两种方式)
-
介绍异常处理是软件开发的一个关键方面,尤其是在Java中,这种语言以其稳健性和平台独立性而闻名。正确的异常处理不仅可以防止应用程序崩溃,还有助于调试并向用户提供有意义的反馈。...
- 【性能调优】全方位教你定位慢SQL,方法介绍下!
-
1.使用数据库自带工具...
- 全面了解mysql锁机制(InnoDB)与问题排查
-
MySQL/InnoDB的加锁,一直是一个常见的话题。例如,数据库如果有高并发请求,如何保证数据完整性?产生死锁问题如何排查并解决?下面是不同锁等级的区别表级锁:开销小,加锁快;不会出现死锁;锁定粒度...
- 看懂这篇文章,你就懂了数据库死锁产生的场景和解决方法
-
一、什么是死锁加锁(Locking)是数据库在并发访问时保证数据一致性和完整性的主要机制。任何事务都需要获得相应对象上的锁才能访问数据,读取数据的事务通常只需要获得读锁(共享锁),修改数据的事务需要获...
- 一周热门
- 最近发表
- 标签列表
-
- mydisktest_v298 (34)
- document.appendchild (35)
- 头像打包下载 (61)
- acmecadconverter_8.52绿色版 (39)
- word文档批量处理大师破解版 (36)
- server2016安装密钥 (33)
- mysql 昨天的日期 (37)
- parsevideo (33)
- 个人网站源码 (37)
- centos7.4下载 (33)
- mysql 查询今天的数据 (34)
- intouch2014r2sp1永久授权 (36)
- 先锋影音源资2019 (35)
- jdk1.8.0_191下载 (33)
- axure9注册码 (33)
- pts/1 (33)
- spire.pdf 破解版 (35)
- shiro jwt (35)
- sklearn中文手册pdf (35)
- itextsharp使用手册 (33)
- 凯立德2012夏季版懒人包 (34)
- 反恐24小时电话铃声 (33)
- 冒险岛代码查询器 (34)
- 128*128png图片 (34)
- jdk1.8.0_131下载 (34)